707 research outputs found

    The RFLP mapping of the calmodulin gene of Neurospora crassa

    Get PDF
    The map position of the calmodulin gene (cmd) was determined by RFLP (Restriction Fragment Length Polymorphism) mapping in Neurospora crassa. The cmd gene was mapped on chromosome V, between al-3 and inl

    Strategies for increasing gait speed in patients with hip osteoarthritis: their clinical significance and effects on hip loading

    Get PDF
    BACKGROUND: Changes in gait speed are required in various situations and can be achieved by changing stride length, cadence, or both. Differences in strategies for increasing gait speed may have different effects on hip joint and physical function. The purpose of this study was to determine the effects of strategies for increasing gait speed on hip pain, physical function, and changes in hip loading during gait in patients with hip osteoarthritis (OA). We hypothesized that patients who increase gait speed mainly by increasing cadence would have lesser hip pain, a higher physical function, and a lower rate of increase in hip moments with increasing gait speed. METHODS: Forty-seven patients with secondary hip OA (age, 48.3 ± 11.0 years) were included. Gait speed, stride length, cadence, and peak and impulse of the hip moments were measured during gait at self-selected normal and fast gait speeds. The patients were classified as types S (with mainly increasing stride length, n = 11 [23.4%]), C (with mainly increasing cadence, n = 23 [48.9%]), and SC (with increasing stride length and cadence, n = 13 [27.7%]) according to whether they used changes in stride length and/or cadence to transition from normal to fast gait. Hip pain, physical function, and hip moment changes during gait were compared between types. RESULTS: The physical function was higher in types C (38.0 ± 8.8, P = 0.018) and SC (40.6 ± 8.5, P = 0.015) than in type S (28.2 ± 7.8), even after adjustment for age and minimum joint space width. Hip pain was not significantly different between types. The robustness of these results was confirmed with sensitivity analysis. The rates of increases in peak external hip adduction (P = 0.003) and internal rotation moments (P = 0.009) were lower in type C than in type SC. CONCLUSIONS: Type C tended to suppress the increase in hip moments during fast gait. Types C and SC, which included increased cadence, maintained higher physical function levels than type S. Encouraging the use of cadence-increasing strategy may be useful for reducing hip loading and maintaining physical function in patients with hip OA

    Gait- and Posture-Related Factors Associated With Changes in Hip Pain and Physical Function in Patients With Secondary Hip Osteoarthritis: A Prospective Cohort Study

    Get PDF
    Objective: To identify gait- and posture-related factors associated with changes in hip pain and physical function in patients with hip osteoarthritis (OA). Design: Prospective cohort study. Setting: Clinical biomechanics laboratory of a university. Participants: Consecutive sampling of female patients with mild-to-moderate secondary hip OA (N=30). Main Outocome Measures: Hip pain (visual analog scale) and physical function (physical component summary of the Medical Outcomes Study 36-Item Short-Form Health Survey) were measured at baseline and 12 months later. With changes in hip pain and physical function as dependent variables, linear regression analyses were performed with gait- and posture-related factors as independent variables with and without adjustment for age, joint space width, and hip pain or physical function at baseline. Posture-related factors included angles of thoracic kyphosis, lumbar lordosis, sacral inclination, spinal inclination, and spinal mobility. Gait-related factors were walking speed, steps per day, joint angles, external hip joint moment impulses, and daily cumulative hip moments. Results: Multiple linear regression analyses showed that limited hip extension (adjusted standardized B coefficient [95% confidence interval]: −0.52 [−0.88 to −0.17]) and limited external rotation angles (−0.51 [−0.85 to −0.18]) during walking were associated with the worsening of hip pain. An increased thoracic kyphosis (−0.54 [−0.99 to −0.09]), less sacral anterior tilt (0.40 [0.01-0.79]), reduced thoracic spine mobility (0.59 [0.23-0.94]), less steps per day (0.53 [0.13-0.92]), and a slower walking speed (0.45 [0.04-0.86]) were associated with deterioration in physical function. Conclusions: Gait- and posture-related factors should be considered when assessing risk and designing preventive interventions for the clinical progression of secondary hip OA

    MEGADOCK 3.0: a high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments

    Get PDF
    BACKGROUND: Protein-protein interaction (PPI) plays a core role in cellular functions. Massively parallel supercomputing systems have been actively developed over the past few years, which enable large-scale biological problems to be solved, such as PPI network prediction based on tertiary structures. RESULTS: We have developed a high throughput and ultra-fast PPI prediction system based on rigid docking, “MEGADOCK”, by employing a hybrid parallelization (MPI/OpenMP) technique assuming usages on massively parallel supercomputing systems. MEGADOCK displays significantly faster processing speed in the rigid-body docking process that leads to full utilization of protein tertiary structural data for large-scale and network-level problems in systems biology. Moreover, the system was scalable as shown by measurements carried out on two supercomputing environments. We then conducted prediction of biological PPI networks using the post-docking analysis. CONCLUSIONS: We present a new protein-protein docking engine aimed at exhaustive docking of mega-order numbers of protein pairs. The system was shown to be scalable by running on thousands of nodes. The software package is available at: http://www.bi.cs.titech.ac.jp/megadock/k/
    corecore